Crop and medicinal plants proteomics in response to salt stress

نویسندگان

  • Keyvan Aghaei
  • Setsuko Komatsu
چکیده

Increasing of world population marks a serious need to create new crop cultivars and medicinal plants with high growth and production at any environmental situations. Among the environmental unfavorable conditions, salinity is the most widespread in the world. Crop production and growth severely decreases under salt stress; however, some crop cultivars show significant tolerance against the negative effects of salinity. Among salt stress responses of crops, proteomic responses play a pivotal role in their ability to cope with it and have become the main center of notification. Many physiological responses are detectable in terms of protein increase and decrease even before physiological responses take place. Thus proteomic approach makes a short cut in the way of inferring how crops response to salt stress. Nowadays many salt-responsive proteins such as heat shock proteins, pathogen-related proteins, protein kinases, ascorbate peroxidase, osmotin, ornithine decarboxylase, and some transcription factors, have been detected in some major crops which are thought to give them the ability of withstanding against salt stress. Proteomic analysis of medicinal plants also revealed that alkaloid biosynthesis related proteins such as tryptophan synthase, codeinone reductase, strictosidine synthase, and 12-oxophytodienoate reductase might have major role in production of secondary metabolites. In this review we are comparing some different or similar proteomic responses of several crops and medicinal plants to salt stress and discuss about the future prospects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in the plant proteome resulting from salt stress: toward the creation of salt-tolerant crops?

Salinity in agricultural land is a major problem worldwide, placing a severe constraint on crop growth and productivity in many regions, and increased salinization of arable land is expected to have devastating global effects. Though plants vary in their sensitivity to salt stress, high salinity causes water deficit and ion toxicity in many plant species. Considerable efforts have therefore bee...

متن کامل

In vitro Response of Asparagus breslerianus to NaCl

Asparagus breslerianus a wild species in Iran, exhibited tolerance to salt in dry gypsum hills and dry lands. In order to check for salt tolerance thresholdvia in vitro conditions, the A. breslerianus callus was subjected to NaCl (sodium chloride) treatments. Six weeks old calli derived from male spear bud, were exposed to 0, 21.88, 43.76, 65.64, 76.58, 87.52, 109.40, 131.28, 153.16 and 175.04 ...

متن کامل

Expression pattern analysis of transcription factors from Aeluropus littoralis in response to salt stress and recovery condition.

Salinity is one of the most important abiotic stresses that decrease crop production. Transcription factors (TFs) are prominent regulators in plant responses to abiotic stress. In the present study, the expression pattern of four salt-induced genes encoding transcription factors, namely, MYB, RF2, GTF, and ARID was studied in response to salt stress (sodium chloride) and recovery conditions. Th...

متن کامل

Up-regulation of plasma membrane H+-ATPase under salt stress may enable Aeluropus littoralis to cope with stress

Plasma membrane H+-ATPase is a major integral membrane protein with a role in various physiological processes including abiotic stress response. To study the effect of NaCl on the expression pattern of a gene encoding the plasma membrane H+-ATPase, an experiment was carried out in a completely random design with three replications. A pair of specific primers was designed based on the sequence o...

متن کامل

Role of Proteomics in Crop Stress Tolerance

Plants often experience various biotic and abiotic stresses during their life cycle. The abiotic stresses include mainly drought, salt, temperature (low/high), flooding and nutritional deficiency/excess which hamper crop growth and yield to a great extent. In view of a projection 50% of the crop loss is attributable to abiotic stresses. However, abiotic stresses cause a myriad of changes in phy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013